Local Multidimensional Scaling for Nonlinear Dimension Reduction, Graph Drawing and Proximity Analysis

نویسندگان

  • Lisha Chen
  • Andreas Buja
چکیده

In the past decade there has been a resurgence of interest in nonlinear dimension reduction. Among new proposals are “Local Linear Embedding” (LLE, Roweis and Saul 2000), “Isomap” (Tenenbaum et al. 2000) and Kernel PCA (KPCA, Schölkopf, Smola and Müller 1998), which all construct global lowdimensional embeddings from local affine or metric information. We introduce a competing method called “Local Multidimensional Scaling” (LMDS). Like LLE, Isomap and KPCA, LMDS constructs its global embedding from local information, but it uses instead a combination of MDS and “force-directed” graph drawing. We apply the force paradigm to create localized versions of MDS stress functions with a tuning parameter to adjust the strength of nonlocal repulsive forces. We solve the problem of tuning parameter selection with a meta-criterion that measures how well the sets of K-nearest neighbors agree between the data

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Multidimensional Scaling for Nonlinear Dimension Reduction, Graph Layout and Proximity Analysis

In recent years there has been a resurgence of interest in nonlinear dimension reduction methods. Among new proposals are so-called “Local Linear Embedding” (LLE) and “Isomap”. Both use local neighborhood information to construct a global lowdimensional embedding of a hypothetical manifold near which the data fall. In this paper we introduce a family of new nonlinear dimension reduction methods...

متن کامل

Energy/Stress Functions for Dimension Reduction and Graph Drawing: Power Laws and Their Clustering Properties∗

We introduce a parametrized family of energy/stress functions useful for proximity analysis, nonlinear dimension reduction, and graph drawing. The functions are inspired by the physics intuitions of attractive and repulsive forces common in graph drawing. Their minimization generates low-dimensional configurations (embeddings, graph drawings) whose interpoint distances match input distances as ...

متن کامل

Stress functions for nonlinear dimension reduction, proximity analysis, and graph drawing

Multidimensional scaling (MDS) is the art of reconstructing pointsets (embeddings) from pairwise distance data, and as such it is at the basis of several approaches to nonlinear dimension reduction and manifold learning. At present, MDS lacks a unifying methodology as it consists of a discrete collection of proposals that differ in their optimization criteria, called “stress functions”. To corr...

متن کامل

XGvis: Interactive Data Visualization with Multidimensional Scaling

We discuss interactive techniques for multidimensional scaling (MDS) and a system, named \XGvis", that implements these techniques. MDS is a method for visualizing proximity data, that is, data where objects are characterized by dissimilarity values for all pairs of objects. MDS constructs maps of these objects in IR k by interpreting the dissimilarities as distances. MDS in its conventional ba...

متن کامل

Integrating Spatial Proximity with Manifold Learning

Dimension reduction is a useful preprocessing step for many types hyperspectral image analysis, including visualization, regression, clustering and classification. By dimension reduction, high dimensional data are mapped into a lower dimensional space while the important features of the original data are preserved according to a given criterion. Although linear dimension reduction methods such ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008